Symmetric Powers

Jörg Janssen

In this seminar talk we introduce the d-th symmetric power in the category of schemes and construct an isomorphism between the hilbert scheme $H_{i l b_{X / S}^{d}}^{d}$ of X / S and the d-th symmetric power $(X / S)^{(d)}$ of X / S under suitable assumption on the scheme X / S. The talk presents [GW10, Proposition $12.27]^{1}$, [Gro71, Exposé V.1, Proposition 1.1,1.8] ${ }^{2}$ and [BLR90, Chapter 9.3, Proposition3] ${ }^{3}$.

1 The Quotient of a Scheme by a Group

Definition 1.1. Let X be a scheme, G be a group of automorphisms of X and $p: X \rightarrow Y$ a morphism of schemes such that $p=p \circ g$ for all $g \in G$. Then (Y, p) is called the quotient of X by G if for all morphisms of schemes $f: X \rightarrow Z$ such that $f=f \circ g$ for all $g \in G$ there exist a unique morphism $\bar{f}: Y \rightarrow Z$ with $\bar{f} \circ p=f$. The quotient is also denoted by X / G.

Remark 1.2. By definition, if $X \rightarrow S$ is a morphism of schemes and $G \subseteq \operatorname{Aut}_{(S c h / S)}(X / S)$ then Y is a scheme over S st. $p: X \rightarrow Y$ is a morphism in $(S c h / S)$.

Example 1.3. If $X / S \in(S c h / S)$ then an element σ in the symmetric group S_{d} yields an automorphism of the d-th fibre product $(X / S)^{d}$ of X over S given by

$$
(X / S)^{d}(T) \rightarrow(X / S)^{d}(T) ;\left(t_{1}, \ldots, t_{d}\right) \mapsto\left(t_{\sigma(1)}, \ldots, t_{\sigma(d)}\right)
$$

If the quotient of $(X / S)^{d}$ by S_{d} exists then we call it the d-th symmetric power of X / S and denote it as $(X / S)^{(d)}$.

Theorem 1.4. Let $X=\operatorname{Spec} A$ and G be a finite group of automorphisms of X and denote the corresponding morphism of rings for $g \in G$ as $g^{-1}: A \rightarrow A$. Furthermore, set $A^{G}=\{a \in A \mid a=$ $g(a)$ for all $g \in G\}$ and $Y=\operatorname{Spec} A^{G}$. Then (Y, p) is the quotient of X by G, where $p: \operatorname{Spec} A \rightarrow$ SpecA ${ }^{G}$ corresponds to the inclusion map on rings.

Example 1.5. $\left(\mathbb{A}_{\mathbb{Z}}^{1} / \operatorname{Spec} \mathbb{Z}\right)^{(d)}=\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, \ldots, X_{d}\right]^{S_{d}}\right)$ is isomorphic to $\operatorname{Spec}\left(\mathbb{Z}\left[e_{1}, \ldots, e_{d}\right]\right)$ with e_{k} mapping to elementary symmetric polynomials $\sum_{1 \leq i_{1}<\cdots<i_{k} \leq d} x_{i_{1}} \ldots x_{i_{k}}$.
Proposition 1.6. Let X be a scheme, G be a finite group of automorphisms of X and $p: X \rightarrow Y$ be an affine morphism st. $p(g(x))=p(x)$, for $g \in G$ and $x \in X$, and p^{b} yields an isomorphism $\mathcal{O}_{Y} \rightarrow p_{*} \mathcal{O}_{X}^{G}$ with $p_{*} \mathcal{O}_{X}^{G}=\operatorname{ker}\left(p_{*} \mathcal{O}_{X} \rightarrow \prod_{g \in G} p_{*} \mathcal{O}_{X} ; a \mapsto \prod_{g \in G}(a-g(a))\right)$.

Theorem 1.7. Let X be a scheme and G be a finite group of automorphisms of X. Then the following are equivalent:
(i) There exists a morphism of schemes $p: X \rightarrow Y$ as in Proposition 1.6.
(ii) For $x \in X$ there exists an open affine subset $U \subseteq X$ containing the orbit $x G=\{g(x) \mid g \in G\}$ of x.
(iii) It exists an open affine cover of $X=\bigcup_{i \in I} U_{i}$ st. $g\left(U_{i}\right) \subseteq U_{i}$, for $g \in G$.

Corollary 1.8. If X / S is quasi-projective then the d-th symmetric power $(X / S)^{(d)}$ of X / S exists.

[^0]Lemma 1.9. If X / S is quasi-projective and flat then
(i) the d-th symmetric power $(X / S)^{(d)}$ is flat over S and
(ii) for $T \in(S c h / S)$, we have $(X / S)^{(d)} \times_{S} T \cong\left(X_{T} / T\right)^{(d)}$.

2 The Hilbert scheme and the Symmetric Power

In the previous talk we have constructed a map

$$
\begin{gathered}
(X / S)^{d}(T) \rightarrow\left(X_{T} / T\right)^{d}(T) \rightarrow \operatorname{Hilb}_{X / S}^{d}(T) \\
\left(t_{1}, \ldots, t_{d}\right) \mapsto\left(t_{1_{T}}, \ldots, t_{d_{T}}\right) \mapsto t_{1_{T}}(T)+\cdots+t_{d_{T}}(T)
\end{gathered}
$$

which is surjective and finite locally free of rank d !. Furthermore, it is symmetric and thus if X / S is also quasi-projective then the above map factors into

$$
(X / S)^{d} \xrightarrow{\pi}(X / S)^{(d)} \xrightarrow{\alpha} \operatorname{Hilb}_{X / S}^{d}
$$

In the following we will construct an inverse of α.
Definition 2.1. Let A be a ring and M, N be A-modules. A polynomial law from M to N is the collection of morphisms of sets $\left\{f_{A^{\prime}}: M \otimes_{A} A^{\prime} \rightarrow N \otimes_{A} A^{\prime} \mid A^{\prime} A\right.$-algebra $\}$ such that for all $\phi: A^{\prime} \rightarrow A^{\prime \prime}$ morphisms of A-algebras we have $\left(i d_{N} \otimes \phi\right) \circ f_{A^{\prime}}=f_{A^{\prime \prime}} \circ\left(i d_{M} \otimes \phi\right)$. If it exists $d \geq 0$ such that for any $A^{\prime} A$-algebra, $a \in A^{\prime}$ and $x \in M \otimes_{A} A^{\prime}$ it holds that $f_{A^{\prime}}(a x)=a^{d} f_{A^{\prime}}(x)$ then $\left\{f_{A^{\prime}}: M \otimes_{A} A^{\prime} \rightarrow N \otimes_{A} A^{\prime} \mid A^{\prime} A\right.$-algebra $\}$ is called homogeneous polynomial law of deg. d.

Remark 2.2. If we assume that M and N are finite free k-modules then there is the following bijection: ${ }^{4}$

$$
\text { \{polynomial laws from } M \text { to } N\} \stackrel{1: 1}{\leftrightarrow} \text { \{polynomial maps from } M \text { to } N\}
$$

Example 2.3. Let A be a ring and B a flat A-algebra. Then the collection of maps $\gamma_{A^{\prime}}^{d}: B \otimes_{A} A^{\prime} \rightarrow$ $\left(B \otimes_{A} \cdots \otimes_{A} B\right)^{S_{d}} \otimes_{A} A^{\prime} \cong\left(\left(B \otimes_{A} A^{\prime}\right) \otimes_{A^{\prime}} \cdots \otimes_{A^{\prime}}\left(B \otimes_{A} A^{\prime}\right)\right)^{S_{d}}$ given by $x \mapsto x \otimes \cdots \otimes x$, for A^{\prime} an A-algebra, yields a homogeneous polynomial law of degree d from B to the d-th symmetric tensor power of B over A.

Remark 2.4. Consider $A, B, \gamma_{A^{\prime}}^{d}$ as in example 2.3. Then $\left\{\gamma_{A^{\prime}}^{d} \mid A^{\prime} A\right.$-algebra\} is universal, i.e. for all homogeneous polynomial laws $\left\{f_{A^{\prime}} \mid A^{\prime} A\right.$-algebra $\}$ of degree d from B to A, it exists a unique A-linear map $\phi:\left(B \otimes_{A} \cdots \otimes_{A} B\right)^{S_{d}} \rightarrow A$ such that $f_{A^{\prime}}=\left(\phi \otimes A^{\prime}\right) \circ \gamma_{A^{\prime}}^{d}$ with A^{\prime} an A-algebra.

Example 2.5. Let A be a ring, B be a flat A-module and \mathcal{L} be a B-module that is free of rank d over A. Then we denote the determinant of the corresponding matrix with coefficients in A of $\mathcal{L} \xrightarrow{\boldsymbol{b}} \mathcal{L}$ the multiplication with $b \in B$ as $\operatorname{det}_{\mathcal{L}}(b)$. Now,

$$
\left\{\operatorname{det}_{\mathcal{L}, A^{\prime}}: B \underset{\substack{A \rightarrow \operatorname{det}_{\mathcal{L} \otimes_{A^{\prime}}}(x)}}{ } \otimes_{A} A^{\prime} A_{A} \mid A^{\prime} A \text {-algebra }\right\}
$$

is a homogeneous polynomial law of degree d from B to A. As such and the fact that γ^{d} is universal we get a unique A-linear morphism $\operatorname{det}_{\mathcal{L}}:\left(B \otimes_{A} \cdots \otimes_{A} B\right)^{S_{d}} \rightarrow A$ such that $\operatorname{det}_{\mathcal{L}, A^{\prime}}=\left(\operatorname{det}_{\mathcal{L}} \otimes A^{\prime}\right) \circ \gamma_{A^{\prime}}^{d}$ with A^{\prime} an A-algebra. Moreover, $\operatorname{det}_{\mathcal{L}}$ is a morphism of A-algebras.

Proposition 2.6. Let X / S be quasi-projective and flat. Then there exists a canonical morphism of schemes $\sigma:$ Hilb $_{X / S}^{d} \rightarrow(X / S)^{(d)}$.

[^1]On T-valued points this morphism is given by

$$
\begin{gathered}
\operatorname{Hilb}_{X / S}^{d}(T) \rightarrow(X / S)^{(d)}(T) \\
D \mapsto \sigma_{T}(D)
\end{gathered}
$$

with $\sigma_{T}(D): T \rightarrow(D / T)^{(d)} \rightarrow\left(X_{T} / T\right)^{(d)} \rightarrow(X / S)^{(d)}$ and $T \rightarrow(D / T)^{(d)}$ is constructed as above (i.e. for $V \subseteq T$ open and affine st. $f_{*} \mathcal{O}_{D}(V)$ is free of rank d we consider $B=f_{*} \mathcal{O}_{D}(V), L=f_{*} \mathcal{O}_{D}(V)$ and $\left.A=\mathcal{O}_{T}(V)\right)$

Theorem 2.7. If X / S is smooth, proper, quasi-projective and of rel. dimension 1 then α and σ are inverse isomorphisms.

This follows from $\sigma \circ \alpha=i d$ which can be shown by induction on d and the following lemma.
Lemma 2.8. Consider X / S as in theorem 2.7. Then
(i) $(X / S)^{d_{1}} \times{ }_{S}(X / S)^{d_{2}} \rightarrow(X / S)^{\left(d_{1}+d_{2}\right)}$ implies a map d: $(X / S)^{\left(d_{1}\right)} \times{ }_{S}(X / S)^{\left(d_{2}\right)} \rightarrow(X / S)^{\left(d_{1}+d_{2}\right)}$
(ii) For $i=1,2$ and T-valued points $D_{i} \in \operatorname{Hilb}_{X / S}^{d_{i}}(T)$ we have $\sigma_{T}\left(D_{1}+D_{2}\right)=d\left(\sigma\left(D_{1}\right), \sigma\left(D_{2}\right)\right)$.

[^0]: ${ }^{1}$ [GW10] U.Görtz and T. Wedhorn, Algebraic Geometry I: Schemes, Springer Spektrum, Wiesbaden, 2010
 ${ }^{2}$ [Gro71] A. Grothendieck, Revêtment étales et groupe fondamental (SGA1), Lecture Notes in Mathematics vol. 224, Springer, 1971
 ${ }^{3}$ [BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 21, Springer Berlin \& Heidelberg, 1990

[^1]: ${ }^{4}$ see F. Vaccarino, Homogeneous multiplicative polynomial laws are determinants, Jornal of Pure and Applied Algebra, Volume 213, 2009

