Symmetric Powers

Jörg Janssen

In this seminar talk we introduce the *d*-th symmetric power in the category of schemes and construct an isomorphism between the hilbert scheme $Hilb_{X/S}^d$ of X/S and the *d*-th symmetric power $(X/S)^{(d)}$ of X/S under suitable assumption on the scheme X/S. The talk presents [GW10, Proposition 12.27]¹, [Gro71, Exposé V.1, Proposition 1.1,1.8]² and [BLR90, Chapter 9.3, Proposition3] ³.

1 The Quotient of a Scheme by a Group

Definition 1.1. Let X be a scheme, G be a group of automorphisms of X and $p: X \to Y$ a morphism of schemes such that $p = p \circ g$ for all $g \in G$. Then (Y,p) is called the **quotient of** X by G if for all morphisms of schemes $f: X \to Z$ such that $f = f \circ g$ for all $g \in G$ there exist a unique morphism $\overline{f}: Y \to Z$ with $\overline{f} \circ p = f$. The quotient is also denoted by X/G.

Remark 1.2. By definition, if $X \to S$ is a morphism of schemes and $G \subseteq Aut_{(Sch/S)}(X/S)$ then Y is a scheme over S st. $p: X \to Y$ is a morphism in (Sch/S).

Example 1.3. If $X/S \in (Sch/S)$ then an element σ in the symmetric group S_d yields an automorphism of the d-th fibre product $(X/S)^d$ of X over S given by

$$(X/S)^d(T) \to (X/S)^d(T) ; (t_1, \dots, t_d) \mapsto (t_{\sigma(1)}, \dots, t_{\sigma(d)})$$

If the quotient of $(X/S)^d$ by S_d exists then we call it the *d*-th symmetric power of X/S and denote it as $(X/S)^{(d)}$.

Theorem 1.4. Let X = SpecA and G be a finite group of automorphisms of X and denote the corresponding morphism of rings for $g \in G$ as $g^{-1} : A \to A$. Furthermore, set $A^G = \{a \in A | a = g(a) \text{ for all } g \in G\}$ and $Y = SpecA^G$. Then (Y, p) is the quotient of X by G, where $p : SpecA \to SpecA^G$ corresponds to the inclusion map on rings.

Example 1.5. $(\mathbb{A}^1_{\mathbb{Z}}/Spec\mathbb{Z})^{(d)} = Spec(\mathbb{Z}[X_1, \ldots, X_d]^{S_d})$ is isomorphic to $Spec(\mathbb{Z}[e_1, \ldots, e_d])$ with e_k mapping to elementary symmetric polynomials $\sum_{1 \le i_1 \le \cdots \le i_k \le d} x_{i_1} \ldots x_{i_k}$.

Proposition 1.6. Let X be a scheme, G be a finite group of automorphisms of X and $p: X \to Y$ be an affine morphism st. p(g(x)) = p(x), for $g \in G$ and $x \in X$, and p^b yields an isomorphism $\mathcal{O}_Y \to p_*\mathcal{O}_X^G$ with $p_*\mathcal{O}_X^G = ker(p_*\mathcal{O}_X \to \prod_{g \in G} p_*\mathcal{O}_X; a \mapsto \prod_{g \in G} (a - g(a))).$

Theorem 1.7. Let X be a scheme and G be a finite group of automorphisms of X. Then the following are equivalent:

- (i) There exists a morphism of schemes $p: X \to Y$ as in Proposition 1.6.
- (ii) For $x \in X$ there exists an open affine subset $U \subseteq X$ containing the orbit $xG = \{g(x) | g \in G\}$ of x.
- (iii) It exists an open affine cover of $X = \bigcup_{i \in I} U_i$ st. $g(U_i) \subseteq U_i$, for $g \in G$.

Corollary 1.8. If X/S is quasi-projective then the d-th symmetric power $(X/S)^{(d)}$ of X/S exists.

¹[GW10] U.Görtz and T. Wedhorn, Algebraic Geometry I: Schemes, Springer Spektrum, Wiesbaden, 2010

²[Gro71] A. Grothendieck, Revêtment étales et groupe fondamental (SGA1), Lecture Notes in Mathematics vol. 224, Springer, 1971

³[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 21, Springer Berlin & Heidelberg, 1990

Lemma 1.9. If X/S is quasi-projective and flat then

(i) the d-th symmetric power $(X/S)^{(d)}$ is flat over S and (ii) for $T \in (Sch/S)$, we have $(X/S)^{(d)} \times_S T \cong (X_T/T)^{(d)}$.

2 The Hilbert scheme and the Symmetric Power

In the previous talk we have constructed a map

$$(X/S)^d(T) \to (X_T/T)^d(T) \to Hilb^d_{X/S}(T)$$
$$(t_1, \dots, t_d) \mapsto (t_{1_T}, \dots, t_{d_T}) \mapsto t_{1_T}(T) + \dots + t_{d_T}(T)$$

which is surjective and finite locally free of rank d!. Furthermore, it is symmetric and thus if X/S is also quasi-projective then the above map factors into

$$(X/S)^d \xrightarrow{\pi} (X/S)^{(d)} \xrightarrow{\alpha} Hilb^d_{X/S}$$

In the following we will construct an inverse of α .

Definition 2.1. Let A be a ring and M, N be A-modules. A polynomial law from M to N is the collection of morphisms of sets $\{f_{A'}: M \otimes_A A' \to N \otimes_A A' | A' A-algebra\}$ such that for all $\phi: A' \to A''$ morphisms of A-algebras we have $(id_N \otimes \phi) \circ f_{A'} = f_{A''} \circ (id_M \otimes \phi)$. If it exists $d \ge 0$ such that for any A' A-algebra, $a \in A'$ and $x \in M \otimes_A A'$ it holds that $f_{A'}(ax) = a^d f_{A'}(x)$ then $\{f_{A'}: M \otimes_A A' \to N \otimes_A A' | A' A-algebra\}$ is called homogeneous polynomial law of deg. d.

Remark 2.2. If we assume that M and N are finite free k-modules then there is the following bijection:⁴

 $\{polynomial \ laws \ from \ M \ to \ N\} \xrightarrow{1:1} \{polynomial \ maps \ from \ M \ to \ N\}$

Example 2.3. Let A be a ring and B a flat A-algebra. Then the collection of maps $\gamma_{A'}^d : B \otimes_A A' \to (B \otimes_A \cdots \otimes_A B)^{S_d} \otimes_A A' \cong ((B \otimes_A A') \otimes_{A'} \cdots \otimes_{A'} (B \otimes_A A'))^{S_d}$ given by $x \mapsto x \otimes \cdots \otimes x$, for A' an A-algebra, yields a homogeneous polynomial law of degree d from B to the d-th symmetric tensor power of B over A.

Remark 2.4. Consider $A, B, \gamma_{A'}^d$ as in example 2.3. Then $\{\gamma_{A'}^d | A' A\text{-algebra}\}$ is **universal**, i.e. for all homogeneous polynomial laws $\{f_{A'} | A' A\text{-algebra}\}$ of degree d from B to A, it exists a unique $A\text{-linear map } \phi : (B \otimes_A \cdots \otimes_A B)^{S_d} \to A$ such that $f_{A'} = (\phi \otimes A') \circ \gamma_{A'}^d$ with A' an A-algebra.

Example 2.5. Let A be a ring, B be a flat A-module and \mathcal{L} be a B-module that is free of rank d over A. Then we denote the determinant of the corresponding matrix with coefficients in A of $\mathcal{L} \xrightarrow{\cdot b} \mathcal{L}$ the multiplication with $b \in B$ as $det_{\mathcal{L}}(b)$. Now,

$$\{\det_{\mathcal{L},A'}: B \otimes_A A' \to A \otimes_A A' | A' A\text{-algebra}\}_{x \mapsto \det_{\mathcal{L} \otimes_A A'}(x)}$$

is a homogeneous polynomial law of degree d from B to A. As such and the fact that γ^d is universal we get a unique A-linear morphism $\det_{\mathcal{L}} : (B \otimes_A \cdots \otimes_A B)^{S_d} \to A$ such that $\det_{\mathcal{L},A'} = (\det_{\mathcal{L}} \otimes A') \circ \gamma^d_{A'}$ with A' an A-algebra. Moreover, $\det_{\mathcal{L}}$ is a morphism of A-algebras.

Proposition 2.6. Let X/S be quasi-projective and flat. Then there exists a canonical morphism of schemes $\sigma : Hilb^d_{X/S} \to (X/S)^{(d)}$.

 $^{^4 {\}rm see}$ F. Vaccarino, Homogeneous multiplicative polynomial laws are determinants, Jornal of Pure and Applied Algebra, Volume 213, 2009

On T-valued points this morphism is given by

$$Hilb^{d}_{X/S}(T) \to (X/S)^{(d)}(T)$$

$$_{D \mapsto \sigma_{T}(D)}$$

with $\sigma_T(D): T \to (D/T)^{(d)} \to (X_T/T)^{(d)} \to (X/S)^{(d)}$ and $T \to (D/T)^{(d)}$ is constructed as above (i.e. for $V \subseteq T$ open and affine st. $f_*\mathcal{O}_D(V)$ is free of rank d we consider $B = f_*\mathcal{O}_D(V), L = f_*\mathcal{O}_D(V)$ and $A = \mathcal{O}_T(V)$)

Theorem 2.7. If X/S is smooth, proper, quasi-projective and of rel. dimension 1 then α and σ are inverse isomorphisms.

This follows from $\sigma \circ \alpha = id$ which can be shown by induction on d and the following lemma.

Lemma 2.8. Consider X/S as in theorem 2.7. Then (i) $(X/S)^{d_1} \times_S (X/S)^{d_2} \to (X/S)^{(d_1+d_2)}$ implies a map $d: (X/S)^{(d_1)} \times_S (X/S)^{(d_2)} \to (X/S)^{(d_1+d_2)}$ (ii) For i = 1, 2 and T-valued points $D_i \in Hilb_{X/S}^{d_i}(T)$ we have $\sigma_T(D_1 + D_2) = d(\sigma(D_1), \sigma(D_2))$.